The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions

نویسندگان

  • Ellen Besseling
  • Edwin M Foekema
  • Martine J van den Heuvel-Greve
  • Albert A Koelmans
چکیده

It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (Clip) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics Clip, Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: Clip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of Clip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates

Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 d...

متن کامل

Redox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina.

Sulfide oxidation in the lugworm, Arenicola marina (L.), is most likely localized in the mitochondria, which can either produce ATP with sulfide as a substrate or detoxify it via an alternative oxidase. The present study identified selective activators of the energy-conserving and the detoxifying sulfide oxidation pathways respectively. In the presence of the ROS scavengers glutathione (GSH) an...

متن کامل

Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity

Inadequate products, waste management, and policy are struggling to prevent plastic waste from infiltrating ecosystems [1, 2]. Disintegration into smaller pieces means that the abundance of micrometer-sized plastic (microplastic) in habitats has increased [3] and outnumbers larger debris [2, 4]. When ingested by animals, plastic provides a feasible pathway to transfer attached pollutants and ad...

متن کامل

Leaching of plastic additives to marine organisms.

It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of Arenicola marina (lugworm) and Gadus morhua (North Sea cod). We use a biodynamic model that allows cal...

متن کامل

The effect of hydrogen peroxide on isolated body wall of the lugworm Arenicola marina (L.) at different extracellular pH levels.

The effect of hydrogen peroxide on the rate of tissue oxygen consumption, on intracellular pH (pH(i)) and on malondialdehyde (MDA) accumulation was studied in isolated body wall tissue of the lugworm Arenicola marina (L.). H2O2 effects were investigated at various levels of pH(i) by changing medium pH (pH(e)). The largest decrease of tissue oxygen consumption (by 17% below controls), as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2017